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a b s t r a c t

Structural magnetic resonance imaging (sMRI) is widely applied in Alzheimer’s disease (AD) diagnosis
tasks by reflecting structural anomalies of the brain. Currently, most existing methods solely focus
on pathological changes in disease-affected brain regions and ignore their potential associations and
interactions, which provide valuable information for brain investigation. Meanwhile, how to construct
effective structural brain graphs composed of nodes and edges remains appealing. To tackle these
issues, in this paper, we propose a novel multi-relation reasoning network (MRN) to learn multi-
relation-aware representations of brain regions in sMRI data for AD diagnosis, including spatial
correlations and topological information. We frame distinguishing different disease statuses as the
graph classification problem. Each scan is regarded as a graph, where nodes represent brain regions
with abnormal changes selected by group-wise comparison, and edges denote semantic or spatial
relations between them. Specifically, the dilated convolution module learns informative features to
provide discriminative node representations for constructing brain graphs. Multi-type inter-region
relations are then captured by the local reasoning module based on the graph convolutional network
to provide a reliable basis for AD diagnosis, including geometric correlations and semantic interactions.
Moreover, global reasoning is employed on the learned graph structure to achieve information
aggregation and gradually generate the subject-level representation for AD diagnosis. We evaluate the
effectiveness of our proposed method on the ADNI dataset, and extensive experiments demonstrate
that our MRN achieves competitive performance for multiple AD-related classification tasks, compared
to several state-of-the-art methods.

© 2023 Elsevier B.V. All rights reserved.
1. Introduction

Alzheimer’s disease (AD) is a neurodegenerative and irre-
ersible brain disorder, most prevalent in dementia [1]. Approx-
mately 90 million people worldwide are diagnosed with AD,
nd the number of patients with AD is predicted to reach 300
illion across the globe by 2050 [2,3]. AD begins with memory
eficits and develops over disease, accompanied by issues in
ommunication, orientation, and control of bodily functions. It is
ne of the leading causes of death in the elderly population [4,5].
o date, no curative treatment is available for AD, while some
reatments such as medications, exercise, and memory training
an ease symptoms or delay its deterioration [6]. Therefore, it is
orthwhile to diagnose AD as accurately as possible, peculiarly

n its early stage known as mild cognitive impairment (MCI),
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E-mail address: hxh@scu.edu.cn (X. He).
ttps://doi.org/10.1016/j.knosys.2023.110546
950-7051/© 2023 Elsevier B.V. All rights reserved.
which is the transition from cognitively normal (CN) to AD [7].
The diagnosis of AD is essential because it helps delay disease
progression and improves the general well-being of patients [8].

In recent decades, brain imaging technologies have been in-
creasingly investigated to discover relevant biomarkers in the
human brain for AD diagnosis [9–14]. Structural magnetic reso-
nance imaging (sMRI) is a non-invasive imaging technology that
can produce detailed three-dimensional (3D) anatomical images
of the brain and model anatomical brain changes affected by
AD [15–17]. sMRI plays a crucial role in clinical diagnosis and AD
studies. With high contrast of soft tissues and excellent spatial
resolution, sMRI scans can visualize details and subtle changes
in brain tissues, aiding in AD diagnosis. Based on sMRI scans,
various computer-aided diagnosis methods are proposed for the
early detection of AD and MCI.

Recently, deep learning methods shows remarkable success in
computer vision tasks such as medical imaging classification. In
particular, deep convolutional neural networks (CNNs) are em-

pirically verified to have the excellent ability to learn high-level
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eatures from sMRI data and significantly boost the performance
f AD diagnosis with the efforts of many researchers [18–21].
or example, Liu et al. [22] proposed a 3D deep convolutional
eural network (CNN) for AD diagnosis and found that increas-
ng the width of the model produced significant gains. Spasov
t al. [23] used 3D separable and grouped convolutions for ex-
racting high-level representations from full-volume sMRI data
or AD diagnosis. Most existing deep learning methods using full-
olume MRI scans for AD diagnosis are so complicated that they
equire considerable computational resources and time during
raining. Models are not the more complex the better, so it is
mportant to improve diagnostic accuracy using relatively sim-
le methods with efficient networks. The deep-learning-based
D diagnosis methods that achieve competitive results mainly
nclude two steps: extracting features from local image regions
nd then combining the extracted features for further classifi-
ation. Lian et al. [24], for instance, proposed to automatically
dentify discriminative local patches in the whole sMRI data, upon
hich multi-scale feature representations were then fused for AD
iagnosis. Zhu et al. [25] designed a multi-instance deep learning
odel to identify discriminative pathological locations and learn
iscriminative structural features from local sMRI regions for AD
iagnosis. However, most existing methods generally focus on
xtracting image features of disease-related brain regions, disre-
arding location information and potential interactions between
rain regions. The spatial location relationship and topological
tructure of discriminative brain regions in sMRI scans belonging
o different disease states are different. Therefore, using spatial
orrelations and topological information between brain regions
nd combining their local texture information is crucial for AD
iagnosis, understanding disease-affected imaging biomarkers,
nd pathogenesis exploration. In particular, it is still challenging
o construct flexible and effective brain structural connectivity
raphs that reflect complementary spatial correlations and topo-
ogical information of disease-related regions in sMRI scans for
D diagnosis. Moreover, since brain atrophy typically occurs in
ocalized regions, only a few regions in sMRI scans have obvious
tructural changes that are highly associated with pathological
eatures, while the rest of the regions provide little relevant
nformation for AD diagnosis. Therefore, the primary challenge
f deep-learning-based methods based on sMRI scans for AD
iagnosis is to locate important brain regions in sMRI scans that
re significantly affected by AD/MCI and enhance discriminative
eatures within those local regions.

To tackle the issues addressed above, we propose an end-to-
nd multi-relation reasoning network (MRN) for AD diagnosis
sing sMRI data, which is relatively simple and effective. First,
he group-wise comparison is performed on sMRI scans to obtain
ey disease-related brain regions and discover imaging biomark-
rs, based on which multi-relation brain structural connectivity
raphs are constructed, including a semantic graph with dynamic
dges and a bidirectional spatial graph. Then, the local reasoning
LR) module including the semantic and spatial relation encoders
s exploited to learn the spatial relations and potential interac-
ions between regions distributed in the brain for AD diagnosis
aking advantage of GCN. Finally, a graph-level representation of
he disease state classification is generated by doing global rea-
oning. The classification tasks include AD vs. CN (differentiating
D from CN), MCI vs. CN (differentiating MCI from CN) and AD vs.
CI vs. CN (distinguishing between AD, MCI and CN). Potential
pplications of MRN include AD auxiliary diagnosis, which can
elp doctors assess conditions more efficiently and quickly, and
mprove diagnostic accuracy. The main contributions of our study
re summarized as follows.
2

1. We propose a novel network named multi-relation reason-
ing network (MRN) that models AD diagnosis tasks as a
graph classification problem to improve the performance
of sMRI-based AD diagnosis, which assists diagnosticians
to explore potential imaging biomarkers.

2. Brain connectivity graphs are constructed based on the
disease-related brain regions selected by group-wise com-
parisons to represent sMRI data, containing a semantic
graph with dynamic edges and a bidirectional labeled spa-
tial graph.

3. To the best of our knowledge, this is the first study to
learn multi-relation-aware representations of discrimina-
tive brain regions in sMRI data for AD diagnosis, which
captures spatial correlations and potential interactions be-
tween them using GCN to provide valuable information for
AD diagnosis.

4. We evaluate the effectiveness of the proposed method
in the public dataset ADNI, and the experimental results
demonstrate that MRN achieves promising performance
for multiple AD-related classification tasks. We further
investigate the influence of the left and right brain re-
gions on the performance of AD diagnosis, implying that
left regions have more obvious disease-induced structural
changes than the right regions.

The remaining of this study is organized as below: Section 2
introduces the related works. Section 3 describes the material
used for evaluation and the proposed method in detail. Section 4
reports the experimental settings, evaluation criteria and exper-
imental results. Section 5 presents the discussions of this work.
Finally, the conclusion is outlined in Section 6.

2. Related work

In this section, we briefly introduce previous work on
computer-aided AD diagnosis based on sMRI scans. According to
the feature representation used for classification, the previous AD
diagnosis studies could be categorized into two groups, including
the machine-learning-based and deep-learning-based methods.

2.1. Machine-learning-based methods

The machine-learning-based methods are usually comprised
of two primary steps: extracting quantitative features from sMRI
data and then applying traditional machine-learning classifiers.
Feature extraction is a critical component of machine-learning-
based methods. Features with high discrimination ability can
train the classifier quickly and distinguish different classes ef-
fectively. These hand-crafted features include measures of brain
volume, cortical thickness, white matter integrity, or other struc-
tural features. Hett et al. [26], for instance, proposed a novel
texture-based grading method that studies the potential of multi-
directional texture maps extracted with 3D Gabor filters to im-
prove the performance of AD diagnosis. Plocharski et al. [27]
performed the classification of AD and CN based on the sulcal sur-
face features extracted by computing a medial surface from sulcal
meshes. Kloppel et al. [28] used gray matter (GM) density maps
extracted from the whole brain as input to a linear support vector
machine (SVM) classifier to achieve AD diagnosis. Furthermore,
since volumetric sMRI scans contain millions of voxels, these
methods are often developed using feature selection/reduction
algorithms. Wang et al. [29] and Sørensen et al. [30] proposed
to use of the hippocampal features in sMRI scans to assist in
AD diagnosis, as the hippocampus is known to be particularly
affected by the AD pathological process. Additionally, several
studies explored combining complementary information from
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he hippocampus and other brain regions in sMRI scans for AD
iagnosis. For instance, Ahmed et al. [31] fused features extracted
rom the hippocampus and posterior cingulate cortex to train
VM classifiers for AD/MCI diagnosis.
Machine learning-based methods for AD diagnosis often use

and-crafted features such as GM density maps, cortical thick-
ess, or hippocampal shape measurements to construct classi-
iers. However, using independently-extracted features and sub-
equent classifiers may lead to sub-optimal diagnostic perfor-
ance due to potential heterogeneities between them.

.2. Deep-learning-based methods

Lately, deep learning has made remarkable achievements in
omputer vision, which supplies various ideas for diagnosing
D. Using CNNs or other deep learning architectures can learn
he features of different dimensions from the sMRI data and re-
uce the complexity of manual feature extraction. Better features
btained from sMRI scans can contribute to the accurate AD diag-
osis by capturing complex and nonlinear relationships between
eatures and the disease state. In general, deep-learning-based
ethods for AD diagnosis can be categorized into four groups
ccording to the input type: (1) 2D slice-level [32–34], (2) 3D
atch-level [24,35–37], (3) region-of-interest (ROI) level [38–40]
nd (4) 3D subject-level [23,41,42].
2D slice-level: This kind of method utilizes a 2D CNN with a

set of 2D slices obtained from 3D sMRI scans as the input [43].
Valliani et al. [32] used a pre-trained CNN to extract cross-domain
features that enhanced the low-level interpretation of images
and achieved significant improvements in the accuracy of AD
diagnosis. Rashid et al. [34] presented a framework called Biceph-
Net, which modeled the intra- and inter-slice information of 2D
sMRI slices to diagnose AD and had an interpretation function-
ality to understand the classification decision. These algorithms
are highly dependent on the selection methods of the input 2D
slices, which may lead to loss of inter-slice information and data
leakage.

3D patch-level: Methods belonging to this group typically
divide an sMRI scan into a set of 3D patches as input. By automat-
ically locating informative patches in sMRI scans, Lian et al. [24]
designed a hierarchical fully convolutional network for joint
learning and fusing feature representations from patches, regions,
and subjects for AD diagnosis. Qiu et al. [37] developed a frame-
work for selecting high-risk patches from disease probability
maps, upon which the accuracy of AD diagnosis can be improved.
The main advantages of these methodologies are lower memory
costs and fewer parameters to learn.

ROI-level: The inputs for this type of approach are ROIs parti-
tioned from brain sMRI scans. Considering the extracted disease-
related ROI as an instance, Liu et al. [38] constructed a bag
with multiple instances to represent each subject and proposed a
multi-instance learning network for AD classification. Liu et al. [8]
developed a multi-task method based on a CNN to jointly distin-
guish AD and segment hippocampus, which is well-known to be
one of the most important regions in AD among all brain ROIs.
A significant advantage of ROI-level methods is that the inputs
are small, which reduces the risk of overfitting. Moreover, with
the development of graph convolutional networks (GCN), some
researchers have employed them in sMRI data to learn structural
representations of the brain for disease classification [44–46].
Zhu et al. [45] designed a personalized network for AD diag-
nosis via coupling interpretable feature learning with dynamic
graph learning into GCN to produce a reliable diagnosis. Zhou
et al. [46] proposed a GCN framework using multi-modal brain
imaging data, which enhances the performance of AD diagnosis
and identifies biomarkers associated with the disease. Most of
3

the existing GCN-based AD diagnosis methods using sMRI scans
involve only one graph and cannot completely learn the topology
information.

3D subject-level: AD diagnosis is employed at the subject level
sing full-volume MRI scans. Jin et al. [47] introduced an atten-
ion mechanism into a 3D ResNet architecture to improve the
iagnosis performance and further explore potential brain regions
elated to the disease. Liu et al. [22] reported that extending the
odel width and incorporating age information can boost the
erformance of a 3D CNN in distinguishing AD using brain sMRI
cans. The drawback of this methodology is that compared with
he number of network parameters updated during the training
rocess, the number of sMRI scans is small, thus increasing the
isk of overfitting.

Several deep-learning-based studies using sMRI data for AD
iagnosis have attempted to extract rich information to provide
ore accurate classification results. Despite achieving great over-
ll performance, most of the above methods ignore the spatial
orrelations and topological information between brain regions,
hich is crucial for AD diagnosis and understanding the inter-
ctions between disease-affected brain regions. Moreover, not
ll brain regions are equally affected by AD/MCI, which poses
challenge in identifying the regions that are significantly re-

ated to the disease and avoiding the interference of redundant
nformation. This is an important concern in AD diagnostic re-
earch. Therefore, highlighting the discriminative features while
etaining the potential correlations among brain regions is still a
hallenge in the AD diagnosis task.

. Materials and method

.1. Dataset

.1.1. Data acquisition
This paper uses T1-weighted sMRI data from the Alzheimer’s

isease Neuroimaging Initiative (ADNI) [48] dataset, the largest
ublicly available dataset for studying neuroimaging-based AD
iagnosis. A total of 3492 1.5T/3T T1-weighted sMRI scans from
59 CN subjects, 768 MCI subjects and 417 AD subjects from
he ADNI-1, ADNI-GO and ADNI-2 phases constitute the experi-
ental dataset. These scans have been preprocessed with specific

mage preprocessing steps including multiplanar reconstruction
MPR), Gradwarp, B1 non-uniformity correction, and N3 intensity
ormalization. The collected sMRI scans are divided into three
ategories: AD, MCI, and CN. As subjects are screened at multiple
ime points for follow-up visits, each subject has at least one
can, which means that the scans from one subject have a unique
ubject ID and a different session ID. To prevent data leakage [7],
he scans are randomly split by subject ID into training, valida-
ion and testing sets following [22,34,49], with a ratio of 8:1:1.
heir details are presented in Table 1. With this data partitioning
pproach, all available scans from one subject are allocated to the
raining, validation, or testing sets, without data from one subject
plitting across the three sets. The model with the highest vali-
ation accuracy is saved to obtain the final performance on the
esting set. The data is split before preprocessing to prevent data
eakage mentioned in AD diagnosis studies [7]. Data leakage due
o scans of the same subject appearing in the training and test-
ng sets has been demonstrated to artificially improve diagnosis
erformance [18,50]. Clinical criteria including the Mini-Mental
tate Examination (MMSE), global clinical dementia rating (CDR),
nd clinical dementia rating scale sum of boxes (CDR-SOB) scores
nd demographic information are mainly considered for balanced
ata partitioning with similar distributions of scales between the
raining, validation and testing sets. The demographic informa-
ion and clinical scale scores of the studied scans are reported in
erms of mean (standard deviation) in Table 1.
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Table 1
Summary of demographics and clinical scale scores of the dataset.
Split Diagnosis Subjects Scans Age MMSE CDR CDR-SOB

Training
CN 360 837 76.22(6.21) 28.95(1.88) 0.02(0.17) 0.10(0.34)
MCI 613 1350 74.81(7.82) 27.34(2.75) 0.48(0.16) 1.64(1.10)
AD 345 586 75.86(7.33) 21.59(4.65) 0.91(0.49) 5.45(2.74)

Validation
CN 50 121 75.82(5.90) 29.14(1.09) 0.02(0.14) 0.11(0.30)
MCI 72 185 75.57(7.41) 27.34(2.28) 0.49(0.11) 1.67(1.10)
AD 36 54 73.82(7.48) 22.02(3.67) 0.90(0.39) 5.53(2.35)

Testing
CN 49 121 75.44(6.02) 29.09(1.18) 0.03(0.17) 0.11(0.33)
MCI 79 184 73.79(7.40) 27.42(2.82) 0.47(0.19) 1.61(1.02)
AD 36 54 74.60(8.38) 22.06(4.04) 0.83(0.38) 5.21(2.64)
Table 2
Details of the 12 most important regions in the AAL3 atlas.
Rank Region ID Region name Region abbreviation Kendall correlation

1, 3 41, 42 Left and Right Hippocampus lHIP and rHIP −0.3304, −0.3172
2, 4 45, 46 Left and Right Amygdala lAMYG and rAMYG −0.3207, −0.3005
5, 6 43, 44 Left and Right ParaHippocampal gyrus lPHG and rPHG −0.2820, −0.2693
9, 8 89, 90 Left and Right Middle temporal gyrus lMTG and rMTG −0.2295, −0.2343
7, 10 93, 94 Left and Right Inferior temporal gyrus lITG and rITG −0.2423, −0.2180
12, 11 91, 92 Left and Right Temporal pole: middle temporal gyrus lTPOmid and rTPOmid −0.2127, −0.2155
Fig. 1. The illustration of the data preprocessing. The input of the data preprocessing process is an sMRI scan, and the outputs are discriminative brain regions
significantly associated with AD/MCI through scan preprocessing, brain parcellation and regions rank.
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3.1.2. Data preprocessing
For this study, sMRI scans are preprocessed using the Clin-

ca software platform1 [51], which supports FSL,2 SPM3 and
reeSurfer [52]. The input is the sMRI scans transformed to the
rain Imaging Data Structure (BIDS) format. First, tissue segmen-
ation, such as gray matter, white matter and cerebrospinal fluid,
nter-subject registration using Dartel, and spatial normalization
nto standard Montreal Neurological Institute (MNI) space are
erformed on the input images. Moreover, the intensity normal-
zation is done by the min–max normalization. After intensity
ormalization, brain parcellation is performed with the well-
nown atlas Automated Anatomical Labeling 3 (AAL3) [53] with
anually-labeled anatomical regions. The idea builds on spatial
ormalization, which ensures that the same brain region appears
n the same location across different scans. The atlas AAL3 can
herefore be used as a mask to parcellate the brain. Finally, a set
f 166 anatomical regions are obtained by atlas warping and the
verage gray-matter density is calculated in each brain region.
he illustration of data preprocessing is shown in Fig. 1.
Structural changes in some brain structures are strongly cor-

elated with the disease [15]; therefore, we rank the importance
f informative regions by group-wise comparisons according to
ocal morphological features to identify brain regions that have
ignificant group differences. Kendall correlation analysis [54] is
erformed on the gray matter density of each brain region (X)

and disease category (Y ) to measure the correlation, strength of
association and direction of the relationship between them as

1 http://www.clinica.run.
2 https://fsl.fmrib.ox.ac.uk/fsl.
3 https://www.fil.ion.ucl.ac.uk/spm.
 l

4

follows:

k =
C − D√

(T − Tx)
(
T − Ty

) (1)

here k is the Kendall correlation coefficient. C is the number
f concordant pairs and D is the number of discordant pairs.
x1, y1) and (x2, y2) are concordant if (x1 − x2) (y1 − y2) > 0 and
iscordant if (x1 − x2) (y1 − y2) < 0. T = n(n − 1)/2, is the
otal number of pairwise comparisons, where n is the sample
ize.Tx =

∑
x tx (tx − 1) /2, Ty =

∑
y ty

(
ty − 1

)
/2, where tx is

he number of identical y in the gray matter density (X), ty is the
umber of identical x in the disease state (Y ).
Statistical analysis is performed using the SPSS 26. Regional

ifferences are examined in the gray matters between the three
ategories, which are expressed by the absolute value of the
endall correlation coefficient. A larger absolute value indicates
hat the region is closely correlated with the disease status;
hat is, the region is more discriminative. The direction of the
elationship is indicated by the sign of the coefficient, and a -
ign means a negative correlation between X and Y . The top
2 high-ranked regions with statistically significant differences
etween groups are selected for experiments and analysis, in-
luding the bilateral hippocampus, bilateral amygdala, bilateral
arahippocampal gyrus and bilateral temporal gyrus, as shown
n Fig. 2. Their details are presented in Table 2. These regions are
onsistent with some medical research [25,55], which predomi-
ate the histopathological changes in the clinical manifestations
f AD.

.2. Overview of the proposed framework

As the human brain is a topologically complex network, we
egard sMRI-based AD diagnosis as a graph classification prob-

em. Compared with CN subjects, the potential associations and

http://www.clinica.run
https://fsl.fmrib.ox.ac.uk/fsl
https://www.fil.ion.ucl.ac.uk/spm
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Fig. 2. Representation of the top-12 disease-affected brain regions.
Fig. 3. Overview of the proposed multi-relation reasoning network (MRN), which includes four components: (1) region representation module, (2) graph construction
module, (3) local reasoning module, and (4) classification module.
t
t

interactions between the discriminant brain regions in the sMRI
data are different in patients with AD and MCI. Therefore, we
develop a novel multi-relation reasoning network (MRN) to cap-
ture spatial correlations and potential interactions between brain
regions associated with disease, providing reliable information for
AD diagnosis. As shown in Fig. 3, our proposed method mainly
consists of four components: region representation learning via
dilated convolution (Section 3.3), construction of brain connec-
tivity graphs (Section 3.4), extraction of spatial interactions and
topological information (Section 3.5), and information aggrega-
tion through global reasoning for classification (Section 3.6). Since
abnormal brain atrophy occurs in few local regions, especially
at the MCI stage, selected brain regions in data preprocessing
are used as inputs. Three classifications (AD vs. CN, MCI vs. CN
and AD vs. MCI vs. CN) are considered as AD-related diagnosis
tasks in this paper. For these three classification tasks, the inputs
of the framework are respectively six, eight and twelve paired
discriminative brain regions that are determined experimentally,
and the outputs are predictions of the disease status.

3.3. Region representation

Since AD is believed to affect various brain regions differ-
ntly, using full-volume sMRI data for AD diagnosis may provide
rrelevant information, which leads to a reduction in diagnos-
ic performance. Therefore, the top-K regions with the highest
orrelation values are selected as inputs. Considering that the
izes of the input regions are different and relatively small, the
ilated convolution module is designed to learn more informative
epresentations of discriminative regions, including near and dis-

ant information. The proposed dilated convolution (DC) module

5

includes four blocks, each consisting of 3D dilated convolution,
instance normalization (IN) and ReLU layers. First, the input re-
gion is passed through a convolution layer with a 1 × 1 × 1
convolution filter and a stride of 1, which can be considered as
a linear transformation of input channels. The followed dilated
convolution layers severally contain 64, 128 and 256 filters with a
small kernel size of 3 × 3 × 3, and the dilated coefficients are set
to 1, 2 and 5, respectively. Instead of using large convolution fil-
ters, we utilize dilations in the convolution layers to detect more
relevant information by increasing the receptive fields without
additional computational overhead. Finally, the global average
pooling operation is performed to generate the region features.
Given an sMRI scan, the informative brain regions are cropped
and fed into the DC module to produce region representations
V = {νi}

K
i=1 with K regions (νi denotes the 256-dimensional

feature of each brain region).

3.4. Graph construction

3.4.1. Semantic graph
Taking advantage of the DC module, each sMRI scan can be

represented by a set of features V = {νi}
K
i=1, such that each

feature νi encodes a brain region. Upon this, a fully connected
graph Gsem = (V, Esem) is constructed, where V and Esem are
he sets of nodes and edges, respectively. Each brain region is
reated as a node with representation νi. The edge set Esem is
described as the correlation of brain regions, which is estimated
dynamically from the region representations as Eq. (2) during
training instead of being pre-defined and shared for all sMRI
scans. The semantic graph G is specific for each sMRI scan
sem
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Fig. 4. Definition of twenty-one kinds of spatial relations between two brain regions i and j. The red cube represents region i and the blue cube indicates region j.
hich captures content-related region dependencies.

sem = δ (WrV) (2)

here δ(·) is the sigmoid activation function and Wr is the weight
o formulate the dynamic correlations Esem.

.4.2. Spatial graph
Especially, spatial information contributes to the understand-

ng of potential biomarkers for AD diagnosis, which reflects the
pace appearance of individual regions and the geometric rela-
ions between regions. Therefore, a bidirectional spatial graph
s built to fully exploit relative spatial relations between crucial
rain regions. Given two brain regions i and j, their locations are

expressed as (xi, yi, zi) and
(
xj, yj, zj

)
, which are the normalized

oordinates of the center of mass. The edges and corresponding
abels between them depend on the Intersection over Union (IoU),

elative distance dij (dij =

√(
xj − xi

)2
+

(
yj − yi

)2
+

(
zj − zi

)2),
elative polar angle θij and relative azimuthal angle αij between
egions i and j in the spherical coordinate system. There are 21
ypes of position relations as illustrated in Fig. 4. Two special
ituations are firstly discussed for joining edges from region i to
egion j with its geometric relation label as ‘interior’ and ‘cover’,
here ‘interior’ stands for that region i is fully contained in region
(type 1), while ‘cover’ represents that region i completely covers
egion j (type 2). Otherwise, if the IoU is greater than 0.2, an
dge is directly established, which is defined as ‘overlap’ (type
). Furthermore, when the ratio ϕij of the relative distance dij to
he diagonal length of full-volume sMRI scan is less than 0.5, the
dge is defined according to θij and αij, and the spatial relation
adjacency’ is marked as 6∗

⌊
θij
60◦

⌋
+

⌊ αij
60◦

⌋
+4 (type 4–21). When

the ratio ϕij > 0.5 and IoU < 0.2, the spatial correlation between
region i and region j is too weak to establish an edge. It is worth
noting that the spatial graph Gspa =

(
V, Espa

)
is directional, where

edges εi,j and εj,i are symmetric.

3.5. Multi-relation reasoning on graphs

After graph construction, each sMRI scan is represented by
two graphs Gsem and Gspa. The local reasoning (LR) module is
developed to contextually encode brain regions with semantic
and spatial graph structures into multi-relation-aware represen-
tations. This module involves two encoders: semantic relation
encoder and spatial relation encoder.

3.5.1. Semantic relation encoder
To enrich the region-level representations for AD diagnosis, a

semantic relation encoder via GCN [56] is introduced to derive
the semantic relation perception on the dynamic graph between
brain regions in an adaptive manner. GCN inductively updates
the node representation by aggregating the features of adjacent
nodes. In the semantic relation encoder, the correlation matrix
Esem is calculated adaptively by relying on input representations,
which is different from the traditional GCN in that its adjacency
matrix is fixed and shared with all sMRI scans. Since every sMRI
6

scan has a personalized Esem, it promotes the representative abil-
ity of the semantic relation encoder and reduces the possibility
of over-fitting caused by static graphs. The representations with
semantic relations V 1

=
{
v1
1, v

1
2, . . . , v

1
k

}
are updated as follows:

V 1
= f (EsemVW1) (3)

where f (·) is the LeakyReLU function, Esem is the dynamic corre-
lation matrix, and W1 is the state-update weights, V denotes the
node features.

3.5.2. Spatial relation encoder
Because the spatial graph is directional and contains labels in-

dicating spatial relations, different directions and labels between
any two nodes need to be updated using separate transformation
matrices and biases, respectively. To address this, taking advan-
tage of the GCN and attention mechanism, a spatial encoder is
employed to perform reasoning on the spatial graph so that it
is sensitive to aggregate information directionally and focus on
potentially important edges automatically. Therefore, the rep-
resentation of a region i in the spatial graph is formulated as
follows:

v2
i = σ

⎛⎝ ∑
j∈N(vi)

Wdir(i,j) ·
(
αijvj

)⎞⎠ (4)

where W is the projection matrix and σ (·) denotes a nonlinear
function. N (vi) indicates the neighbor set of vi, including vi itself.
αij is the attention coefficient, and the calculation formula is as
follows:

αij =

exp
((

Wϕv′

i

)T
· Vdir(i,j)vj + blab(i,j)

)
∑

j∈N(vi)
exp

((
Wϕv′

i

)T
· Vdir(i,j)vj + blab(i,j)

) (5)

where Wϕ denotes the transformation matrix and dir(i, j) repre-
sents the direction of edges

(
vi − vj, vj − vi

)
. lab(i, j) and lab(j, i)

are labels from vi to vj and vj to vi, respectively.
To enrich the ability of the model, multi-head attention [57]

is utilized, which concatenates the output features from each
attention head to obtain the region-level representations with
spatial correlation perception V 2

=
{
v2
1, v

2
2, . . . , v

2
k

}
as follows:

v2
i =∥

M
m=1 σ

⎛⎝ ∑
j∈N(vi)

Wm
dir(i,j) ·

(
αm
ij vj

)⎞⎠ (6)

where M represents the number of independent attention mech-
anisms.

3.6. Classification

The final region-level representation V ∗ is obtained by adding
the semantic-relation aware representation V 1 and the spatial-
relation aware representation V 2 as V ∗

= V 1
+ V 2 to enhance

classification accuracy. Then, inspired by [58], the sequence of
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rain region features V ∗
=

{
v∗

1, v
∗

2, . . . , v
∗

k

}
is fed one by one

nto gated recurrent unit (GRU) [59] for global reasoning to select
he discriminative information and filter out the unimportant one
o generate the subject-level representation. During this process,
he subject-level representation gradually grows and is updated
n the memory cell (hidden state).

At each reasoning step t , the update gate zt analyzes the cur-
rent input region feature v∗

t and the description of the whole scan
at the last step mt−1 to decide how much the past information
passes. zt is computed by:

zt = sigmoid
(
W zv∗

t + U zmt−1 + bz
)

(7)

where W z , U z and bz are weights and bias.
The newly added memory content helping grow the subject-

level representation is computed as follows:

m̃t = tanh
(
Wmv∗

t + Um (rt ◦ mt−1) + bm
)

(8)

where Wm, Um and bm are weights and bias. ◦ represents an
element-wise multiplication. rt denotes the reset gate that com-
putes similarly to the update gate. rt decides what information
to forget based on the reasoning between v∗

t and mt−1, which is
calculated as follows:

rt = sigmoid
(
W rv∗

t + U rmt−1 + br
)

(9)

where W r , U r and br are weights and bias.
Then subject-level representation mt at the current step is a

linear interpolation utilizing update gate zt between the previous
representation mt−1 and the new content m̃k as follows:

mt = (1 − zt) ◦ mt−1 + zt ◦ m̃t (10)

Each brain region feature v∗
t contains global relation informa-

tion, so the update of mt is based on reasoning on a graph topol-
ogy, which considers both the current local region and global
correlations. The memory cell mk at the end of the sequence V ∗

is defined as the final subject-level representation V , where k is
the length of V ∗.

For classification, two fully connected layers and activation
function softmax(·) are stacked with the subject-level representa-
tion V as input, which predicts the probability score of the input
sMRI belonging to a specific category. The loss function for AD
diagnosis is the cross-entropy loss between the predicted label
and the ground truth label.

4. Results

4.1. Experimental settings

All experiments are conducted using Python 3.6 based on the
Pytorch library. The proposed framework is implemented using
a computer with Ubuntu 18.04 operating system, which contains
an NVIDIA GeForce GTX 3090 GPU (24 GB). Training is performed
using the Adam [60] optimizer with a batch size of 16 within 200
epochs. The initial learning rate is 0.0001, which is then adjusted
according to the cosine annealing strategy.

4.2. Evaluation criteria

To quantitatively evaluate the results of AD diagnosis, five
commonly-used metrics [61–63], including the overall accuracy
(ACC), sensitivity (SEN), specificity (SPE), F1-score (F1) and the
area under the receiver operating characteristic curve (AUC) are
utilized as evaluation criteria, which are defined as follows:

ACC =

∑Nc
i=1 TPi (11)

N p

7

SEN =

∑Nc
i=1

TPi
TPi+FNi

Nc
, SPE =

∑Nc
i=1

TNi
FPi+TNi

Nc
(12)

F1 =

∑Nc
i=1

2×TPi
2×TPi+FNi+FPi

Nc
(13)

where TPi, FPi, FNi, TNi denote the true positive, false positive,
false negative and true negative for the ith disease status, and Nc
is the number of total classes. N is the number of total samples
in Nc classes. Nc equals 2 and 3 in the two-class and multi-class
diagnosis tasks, respectively.

4.3. Experimental results

4.3.1. Comparison with other methods
To justify the performance of the MRN, we compare it with

state-of-the-art (SOTA) sMRI-based AD diagnosis approaches and
baseline methods on the same experimental data in three clas-
sification tasks (AD vs. CN, MCI vs. CN, and AD vs. MCI vs.
CN).

AD vs. CN: This classification task is considered to be the
simplest in AD-related diagnosis because the sMRI scans of AD
patients show highly obvious changes, that is, a significant degree
and range of brain atrophy, compared with healthy groups. This
facilitates the deep learning network to learn the differences
between the two statuses from the sMRI images. It is important to
stress that the results labeled * from comparative methods [8,37,
40,47] are not completely comparable, since the sMRI scans and
preprocessing progress adopted in these studies are not identical,
it is not known whether data leakage occurred, the comparisons
are made for reference only. Three classical networks for solving
classification problems, 3D ResNet-18, ResNet-50 and ResNet-
101 [64], and Extended-2D [65], Biceph-Net [34], and CDFA [22]
are further utilized for AD classification using full-volume sMRI
data same as in this study, for a fair comparison.

Several observations are summarized in Table 3. First, the
diagnostic performance reduces as the depth of the ResNet in-
creased, indicating that increasing the depth does not always
lead to better accuracy in AD diagnosis. A possible explanation
for the finding is that increasing the depth increases the num-
ber of parameters to be trained, leading to a higher possibility
of overfitting. Second, our MRN achieves a highly competitive
performance, with ACC reaching 92.57%, which is higher than
that of the SOTA methods. Furthermore, compared with subject-
level methods using the same data and preprocessing process,
our method yields a significant improvement in the overall per-
formance, corresponding to a 1.71% increase over CDFA [22]
(90.86%). This result might be explained by the fact that the
proposed MRN can extract the topological and spatial correlations
of local region-level brain structures through GCN better than
the full-volume brain features. The performance comparison val-
idates the effectiveness of regrading sMRI brain regions as graphs
for AD vs. CN diagnosis.

MCI vs. CN: We further compare MRN with competing meth-
ds for more complex MCI vs. CN classification task. This is
onsidered much more challenging than the AD vs. CN classi-
ication because sMRI scans from patients with MCI show no
bvious disease-induced structural changes visually. Therefore, it
s difficult to use traditional CNN to implement the MCI vs. CN
lassification, as they may overlook subtle changes in sMRI scans,
eading to misclassification.

It can be seen from Table 4 that MRN achieves better per-
ormance in the MCI vs. CN diagnosis task in most cases. For
xample, the AUC (73.14%) and F1 (80.39%) yielded by the pro-
osed framework are better than those obtained using the other
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Table 3
Performance comparison with SOTA methods for AD vs. CN classification.
Method Subjects AD vs. CN classification (%)

ACC SEN SPE AUC F1

ACN [47]a 227AD + 305CN 92.10 89.00 94.40 94.10 –
IDLF [37]a 188AD + 229CN 83.40 76.70 88.90 – 80.60
ADDL [7]a 336AD + 330CN 89.00 – – – –
JHSAC [8]a 97AD + 119CN 88.90 86.60 90.80 92.50 –
BSN [40]a 65AD + 65CN 85.30 – – – –
TLCF [66]a 209AD + 302CN 89.24 85.58 91.72 95.00 –
Extended-2D [65] 345AD + 360CN 74.65 43.90 88.37 75.79 51.66
Biceph-Net [34] 345AD + 360CN 83.43 79.63 85.12 82.38 74.78
CDFA [22] 345AD + 360CN 90.86 92.59 90.08 95.73 86.21
ResNet-18 345AD + 360CN 89.14 81.48 92.56 93.07 82.24
ResNet-50 345AD + 360CN 88.57 87.04 89.26 93.43 82.46
ResNet-101 345AD + 360CN 88.57 87.04 89.26 95.24 82.46
MRN 345AD + 360CN 92.57 83.33 96.69 97.64 87.38

aMeans just as a reference since the selected experimental data and data preprocessing processes in these methods
are different.
Table 4
Performance comparison with SOTA methods for MCI vs. CN classification. The best performances using the same
data and different data are shown in bold and underlined, respectively.
Method Subjects MCI vs. CN classification (%)

ACC SEN SPE AUC F1

AIN [67]a 251MCI + 302CN 69.44 – – 76.00 66.00
JHSAC [8]a 233MCI + 119CN 76.20 79.50 69.80 77.50 –
BSN [40]a 65MCI + 65CN 83.70 – – – –
TLCF [66]a 251MCI + 302CN 75.58 72.94 77.81 83.00 73.00
Extended-2D [65] 613MCI + 360CN 61.81 92.82 14.65 58.55 74.57
Biceph-Net [34] 613MCI + 360CN 62.63 90.17 18.52 54.35 74.82
CDFA [22] 613MCI + 360CN 60.98 46.74 82.64 67.82 59.11
ResNet-18 613MCI + 360CN 64.92 71.74 54.55 64.09 71.16
ResNet-50 613MCI + 360CN 61.31 99.46 3.31 56.21 75.62
ResNet-101 613MCI + 360CN 63.28 91.85 19.83 59.95 75.11
MRN 613MCI + 360CN 73.77 89.13 50.41 73.14 80.39

aMeans just as a reference since the selected experimental data and data preprocessing processes in these methods
are different.
ethods with the same inputs. Meanwhile, our proposed ap-
roach produces the highest classification ACC (73.77%), which
s 8.85% higher than the highest accuracy using the same ex-
erimental data yielded by ResNet-18. The MRN, which is a
egion-level method, is generally superior to subject-level meth-
ds. A possible reason for this is that region-level representations
ith multi-relation reasoning could learn more discriminative

ocal features and discard invalid features. The results report that
he diagnostic accuracy of MCI is signally lower than that of
he other states, indicating that the challenge lies in identifying
djacent disease states. Because MCI is an intermediate stage
etween CN and AD, which does not significantly affect the daily
ife of patients, it is difficult to diagnose MCI.

AD vs. MCI vs. CN: In the challenging multi-class diagno-
sis task, the proposed MRN is further compared with several
SOTA studies, as well as classification methods using the same
sMRI data, with the results shown in Table 5. The differences
in pathological brain changes among the three categories is very
subtle. Early-stage MCI patients with low lesions are more like CN
subjects, whereas MCI patients in later stages are more similar to
early-stage AD patients with more extensive and severe abnor-
malities, making the multi-class diagnosis problem challenging.

As shown in Table 5, our MRN has dominant performance
compared to competing methods with the same experimental
data or existing methods [32,68] using different sMRI scans. For
example, MRN achieves an ACC of 63.23% and an F1 of 60.23%,
which are 9.19% and 5.37% higher than those of the subject-level
CDFA method [22], respectively. Furthermore, the region-level
MRN method clearly shows advantages over subject-level meth-
ods. For instance, MRN outperforms ResNet-18 with gains of
3.34%, 1.56% and 2.42% regarding ACC, AUC and F1, respectively.
8

Specifically, MRN achieves a superior improvement in SEN, mean-
ing that it has a lower omission diagnostic rate for multi-class
diagnosis. This suggests that the proposed framework is more
sensitive to changes in the brain anatomy associated with the
disease. Further analysis is performed using the confusion matrix
for multi-class classification, as provided in Fig. 5. The correct pre-
diction for each label is displayed on the diagonal of the matrix.
We can observe that the most difficult challenge is to distinguish
CN from MCI, in which for the CN label, MRN likely misclassifies
it as an MCI label. Because the brains of older subjects already
show signs of neurodegeneration associated with aging, which
explains the lower accuracy of the CN class. However, the high
sensitivity in distinguishing between CN and MCI indicates fewer
false negative results, which helps detect patients with MCI and
AD at an early stage. Overall, the confusion matrix reflects that
MRN can generate clear boundaries between labels, especially
CN vs. AD. In conclusion, the experimental results indicate that
our proposed approach employing multi-relation reasoning in
brain regions to extract semantic and spatial correlations achieves
competitive performance, irrespective of two-class classification
tasks or the multi-class classification task.

4.3.2. Comparison of computational complexity
In this section, the computational complexities are listed in

Table 6. To compare the space and time costs, three metrics are
selected: total number of parameters in millions (Params), the
model size on disk in megabytes (Size), and floating point of oper-
ations (FLOPs). To facilitate comparison, models trained on the AD
vs. CN classification task by these methods are adopted. ResNet-
18 occupies 385 MB, CDFA [22] occupies 345 MB, while MRN only
takes up 26.50 MB. We can observe that our framework occupies
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Table 5
Performance comparison with SOTA methods for AD vs. MCI vs. CN classification.
Method Subjects AD vs. MCI vs. CN classification (%)

ACC SEN SPE AUC F1

DRN [32]a 188AD + 243MCI + 229CN 56.80 – – – –
JMLRC [68]a 79AD + 190MCI + 143CN 58.40 – – – 57.60
Extended-2D
[65]

345AD + 613MCI + 360CN 52.14 37.41 68.18 60.85 33.30

Biceph-Net [34] 345AD + 613MCI + 360CN 52.09 36.06 67.40 64.07 28.10
CDFA [22] 345AD + 613MCI + 360CN 54.04 60.23 75.98 72.61 54.86
ResNet-18 345AD + 613MCI + 360CN 59.89 56.78 76.03 73.54 57.81
ResNet-50 345AD + 613MCI + 360CN 56.55 47.67 73.10 71.16 49.78
ResNet-101 345AD + 613MCI + 360CN 58.50 56.33 75.73 69.66 58.38
MRN 345AD + 613MCI + 360CN 63.23 59.34 78.13 75.10 60.23

aMeans just as a reference since the selected experimental data and data preprocessing processes in these methods are different.
Table 6
Comparison results in terms of Params, Size and FLOPs.
Model Params (M) Size (MB) FLOPs (G)

Extended-2D [65] 1.36 5.27 0.42
Biceph-Net [34] 14.99 58.00 16.84
ResNet-18 128.45 385.00 178.20
ResNet-50 183.88 552.00 240.61
ResNet-101 332.83 999.00 375.56
CDFA [22] 89.75 345.00 99.11
MRN 8.76 26.50 97.77

Fig. 5. Confusion matrix of MRN for multi-class diagnosis.

significantly less space on the disk. In addition, the proposed
method outperforms by 3.43% over ResNet-18, which is approx-
imately twice that of the complex (178.20G FLOPs). Moreover,
the proposed method is significantly more space efficient than
ResNet-18 in terms of Params (fourteen times fewer parameters).
MRN yields competitive performance in AD diagnosis, while is
superior in terms of computational complexity. Our proposed
method reduces the time and cost of AD diagnosis and has the
potential to be a useful clinical tool for the early diagnosis of AD.

4.4. Ablation study

4.4.1. Ablation study for region representation
In the proposed network shown in Fig. 3, the DC module

s employed to learn the informative representation of disease-
ffected brain regions. To investigate the effectiveness of the DC
odule, we further conduct a group of experiments by using
esNet-18, the standard convolution module instead of dilated
onvolution, the DC module, and the DC module replacing IN with
atch normalization (BN), respectively, and denote these four
ariants as ‘ResNet’, ‘Conv’, ‘DC (IN)’ and ‘DC (BN)’. Note that the
egion representations are concatenated and directly fed to the
lassifier without the LR module for disease diagnosis to verify
he effectiveness of our proposed DC module. The experimental
esults are given in Fig. 6.
9

Looking at Fig. 6, it is apparent that the proposed DC module
obtains better results compared with the other three methods
in terms of all evaluation metrics for the two-class diagnosis.
In addition, the superiority of ‘DC (IN)’ over ‘Conv’, ‘ResNet’ and
‘DC (BN)’ is particularly obvious in multi-class classification. For
example, ‘DC (IN)’ obtains favorable results with an ACC of 60.17%
and an F1 of 57.54%, which are 1.40% and 0.73% higher than
‘Conv’, 5.85% and 10.92% higher than ‘DC (BN)’, and 5.57% and
14.25% than ‘ResNet’. The reason could be that the DC module
with different dilation rates learns more informative represen-
tations of the discriminative regions. As the brain regions are
relatively small and varied in size, it is difficult to extract rich re-
gion features through traditional CNN, such as ‘Conv’ and ‘ResNet’.
Learning rich region representations using dilations in the con-
volution layers without additional computational overhead is
crucial for AD diagnosis. Moreover, different from the BN, IN is
computed only across the feature spatial dimensions, but again
independently for each channel and sample. Therefore, ‘DC (IN)’
can not only accelerate model convergence but also maintain
the independence between each sMRI scan potentially leading to
higher accuracy.

4.4.2. Ablation study for multi-relation reasoning
In the proposed MRN, multi-relation reasoning based on GCN

is employed on brain connectivity graphs (semantic and spatial
graphs) to learn spatial correlations and topological information
between disease-affected brain regions. To further investigate
the effectiveness of each inter-region relation for AD diagnosis,
we perform experiments by comparing MRN with its variants
with a single correlation, denoted as ‘Semantic’ and ‘Spatial’,
respectively. The results are reported in Fig. 7.

We notice that our proposed MRN that learns spatial corre-
lations and potential interactions between discriminative brain
regions obtains the best performance in most cases, especially
in the AD vs. CN diagnosis task. For instance, MRN method ob-
tains competing results (92.57%, 97.64% and 87.38% for ACC,
AUC and F1, respectively) for the AD vs. CN classification. Ad-
ditionally, in the MCI vs. CN diagnosis, the ACC (73.77%) and F1
(80.39%) achieved by our proposed method are also much better.
These empirical results support our observation that exploiting
both the location information and semantic correlations of dis-
criminative brain regions in MRI scans can assist in AD-related
disease diagnosis. Moreover, ‘Semantic’ and ‘Spatial’ generally
yield worse performance, compared to MRN. This clearly indi-
cates that methods focusing on only one type of relationship
cannot learn reasonable features to represent structural changes
and connectivity representations of the brain, while there may be
interactional relations between atrophied brain regions.
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Fig. 6. Performance of methods using different region representations. (a) AD vs. CN. (b) MCI vs. CN. (c) AD vs. MCI vs. CN.
Fig. 7. Performance of methods using different relation reasoning. (a) AD vs. CN. (b) MCI vs. CN. (c) AD vs. MCI vs. CN.
Fig. 8. Performance of methods using different subject-level representations. (a) AD vs. CN. (b) MCI vs. CN. (c) AD vs. MCI vs. CN.
.4.3. Ablation study for subject-level representation
To investigate the effectiveness of global reasoning using GRU,

e conduct experiments to compare MRN with different variants
hat use widely adopted aggregation methods. The variants uti-
izing global average pooling and attention mechanism to learn
he subject-level representation are denoted as ‘GAP’ and ‘Att’,
espectively. The experimental results are shown in Fig. 8. We
an observe that MRN outperforms the other two variants in the
hree classification tasks in terms of most evaluation metrics. For
nstance, the proposed MRN has dominant performance among
omparison methods in AD vs. MCI vs. CN classification, with
n accuracy of 63.23% and an AUC of 75.10%, which are 2.51%
nd 7.55% higher than ‘GAP’, and 2.23% and 7.91% higher than
Att’. For the challenging task, MCI vs. CN, as can be seen from
ig. 8, global reasoning using GRU shows advantages over the
ther two aggregation methods, for example, it outperforms ‘GAP’
ith gains of 5.25%, 0.60% and 3.47% regarding ACC, AUC and F1.
reasonable explanation is that using GRU to learn the subject-

evel representation can efficiently consider both the local region
nd global correlations, while ‘GAP’ lacks attentively selecting the
seful information and ‘Att’ has no focus on global correlations.
10
5. Discussion

5.1. Results using different validation strategies

To further evaluate the robustness and generalization ability
of the proposed MRN model, we perform additional groups of
experiments with two validation strategies.

In the first group of experiments, we adopt a 5-fold cross-
validation strategy to comprehensively evaluate the validity and
stability of our proposed and compared methods. Specifically, the
whole dataset is randomly partitioned into five subsets (with
approximately equal sizes), and the scans within one subset are
selected as the test data each time, while the rest four subsets are
used to train the models. The experimental results of Extended-
2D [65], Biceph-Net [34], CDFA [22], ResNet18, and MRN are
shown in Fig. 9. We can find that our MRN method achieves a
better performance in both two-class and multi-class diagnosis
tasks in most cases. For example, in the AD vs. CN classifica-
tion, the mean ACC, AUC and F1 values achieved by MRN are
91.89%, 95.08% and 89.50%, respectively, which are much better
than those of ResNet-18 (ACC = 90.01%, AUC = 94.68% and F1
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Fig. 9. Average classification results of the 5-fold cross-validation. (Error bars show standard deviation.) (a) AD vs. CN. (b) MCI vs. CN. (c) AD vs. MCI vs. CN.
Table 7
The experimental results when ADNI-2 is the testing set.

Method AD vs. CN (%) MCI vs. CN (%) AD vs. MCI vs. CN (%)

ACC AUC F1 ACC AUC F1 ACC AUC F1

Extended-2D [65] 73.28 72.99 45.94 53.47 46.84 69.38 44.81 53.94 23.16
Biceph-Net [34] 82.70 78.53 70.59 56.41 48.24 70.23 44.46 58.35 24.35
CDFA [22] 90.60 93.57 83.48 57.99 62.30 71.16 50.68 70.94 43.63
ResNet-18 88.46 91.19 80.00 58.43 57.81 68.56 51.51 69.33 51.54
MRN 91.10 94.51 85.16 60.31 63.47 65.58 52.61 70.24 49.84
Table 8
Influence of using different hemispheres for AD-related classification tasks.
Method AD vs. CN classification (%) MCI vs. CN classification (%) AD vs. MCI vs. CN classification (%)

ACC SEN SPE AUC F1 ACC SEN SPE AUC F1 ACC SEN SPE AUC F1

Left 91.43 81.48 95.87 94.78 85.44 68.20 82.07 47.11 71.85 75.69 62.12 58.16 76.51 76.70 59.07
Right 90.29 77.78 95.87 95.62 83.17 66.56 85.33 38.02 68.94 75.48 60.45 50.53 74.74 71.04 52.55
Left-Right 92.57 83.33 96.69 97.64 87.38 73.77 89.13 50.41 73.14 80.39 63.23 59.34 78.13 75.10 60.23
m
c
u
t
s

= 87.29%). In addition, MRN obtains an overall low standard
deviation (minimum of 1.09% and a maximum of 3.70%) between
the five folds for almost all evaluation metrics.

In the second group of experiments, ADNI-1/GO and ADNI-2
re used as the training and testing sets, respectively, to evaluate
he generalization ability of our method. To ensure the inde-
endence of the samples, subjects that appeared in ADNI-1 and
DNI-GO are removed from ADNI-2. The final number of scans in
he training and testing sets are 2096 and 1093, respectively. The
xperimental results of the AD vs. CN, MCI vs. CN, and AD vs. MCI
s. CN classification tasks are reported in Table 7.
As shown in Table 7, the proposed MRN method consistently

utperforms the compared methods in all performance measures
or the AD vs. CN classification. For instance, the F1 value obtained
y our method is 85.16%, which is better than the second-best
esult of 83.48% yielded by the CDFA [22] method. From Table 7,
e can also observe that our proposed MRN method gener-
lly outperforms competing methods in MCI vs. CN diagnosis
n the ADNI-2 testing set. The ACC value achieved by MRN is
0.31%, which is much better than those yielded by Extended-
D [65], Biceph-Net [34], CDFA [22] and ResNet18 methods. It
s worth noting that MRI scans from ADNI-2 are scanned using
T scanners, while scans from ADNI-1 are 1.5T sMRI. Although
he MRI scans in the training and test sets may have different
ignal-to-noise ratios, the proposed MRN can still reliably distin-
uish patients from cognitively normal people, indicating that our
ethod is robust and generalizable.

.2. Influence of the number of brain regions

As the proposed method focuses on the regions affected by
he disease, avoiding the interference of redundant or noisy in-
ormation, the number of discriminative brain regions needs to
11
be set to a reasonable value. We further analyze the influence
of the number K of discriminative brain regions on diagnosis
performance by shifting it in the set {2, 4, 6, 8, 10, 12}. We report
the ACC, F1 and AUC values achieved by MRN with different
numbers of paired brain regions in AD-related diagnosis tasks in
Fig. 10.

Fig. 10 illustrates that the overall performance increases with
the number of brain regions. Eventually, after exceeding a specific
value, a further increase in K cannot significantly boost the diag-
nostic performance. When K = 6 in the AD vs. CN classification,
the proposed framework achieves the highest ACC, AUC and F1
values of 92.57%, 97.64% and 87.38%, respectively. In particular,
for MCI vs. CN classification, our method with K = 8 yields
satisfactory results with an ACC 73.77% and an F1 80.39%, whereas
the overall performance deteriorates rapidly when K exceeds 8.
These results indicate the need to set an appropriate K value for
ultiple AD-related classification tasks. Too many regions can in-
rease the number of network parameters and bring redundant or
seless information, resulting in performance degradation, while
oo few regions cannot significantly represent disease-induced
tructural changes. Hence, it is reasonable to set K for the AD
vs. CN, MCI vs. CN, and AD vs. MCI vs. CN tasks to 6, 8, and 12
respectively.

5.3. Regions of disease progression

For AD diagnosis, sMRI scans generally reveals atrophy of the
cerebral cortex during the progression of AD. In this paper, the
12 most discriminative regions are identified through correlation
analysis between categories as shown in Fig. 11. Significant brain
regions including the hippocampus, amygdala, parahippocampal
gyrus, middle temporal gyrus, and inferior temporal gyrus are
signed at full views on sMRI scans. This finding is consistent
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Fig. 10. Influence of the number of brain regions on performance in AD-related diagnosis tasks. (a) AD vs. CN. (b) MCI vs. CN. (c) AD vs. MCI vs. CN.
Fig. 11. Identified disease-related brain regions, where letter L stands for the
left hemisphere and letter R stands for the right hemisphere.

with those of previous sMRI [24,25] and biochemical studies [69].
Specifically, the hippocampus, one of the brain regions most
affected by AD, is responsible for storing and retrieving mem-
ory. Brain atrophy in the hippocampus caused by AD has been
biologically confirmed [70]. The amygdala plays an important
role in regulating and remembering emotions [71] that are also
associated with AD. Furthermore, the middle temporal gyrus and
inferior temporal gyrus are largely responsible for verbal fluency,
semantic memory processing and visual perception, which are
cognitive functions affected early in the onset of AD [72]. There-
fore, our method employs brain structure analysis using graph
theory to extract semantic and topological information from sMRI
scans, which can help detect critical changes in brain regions and
thus effectively assist in distinguishing AD, MCI, and CN.

5.4. Visualization of semantic and spatial relations

In this section, we present a visualization of the correlation
matrices Esem and Espa, respectively, to illustrate the learned se-
mantic and spatial relations. The results are shown in Fig. 12, and
the full names of the discriminative brain regions are provided
in Table 2. As shown in Fig. 12(a), the color in the semantic
correlation matrix indicates the strength of the semantic rela-
tionship between discriminative brain regions. We find that the
higher value appears in ‘rMTG’ and ‘lITG’ in the row of ‘lMTG’,
which means that ‘rMTG’ and ‘lITG’ are most relevant for ‘lMTG’
in semantic relation of brain regions for AD diagnosis. Addition-
ally, ‘lAMYG’, ‘lMTG’ and ‘rTPOmid’ have a high relevance score
with other discriminative brain regions. The colors in the spatial
correlation matrix show different spatial relations between the
brain regions. It can be seen from Fig. 12(b), the spatial relations
between the two brain regions are symmetric and bidirectional.
In general, from the observation of the learned semantic and
spatial relations, we can believe that MRN has the capacity to
12
capture the spatial correlations and potential interactions of dis-
criminative brain regions, which provides valuable information
for AD diagnosis.

5.5. Comparison of left and right brain regions

To further investigate the influence of different hemispheres
on AD diagnostic performance, two variants of our method
(i.e., ‘Left’ and ‘Right’) are compared, which only consider left
and right brain regions respectively. The experimental results are
reported in Table 8.

We can observe that the performance based on left brain
regions is doing better than right ones in terms of most evaluation
metrics for the three classification tasks. Specifically, the method
using left brain regions outperforms the right one with gains of
1.64%, 9.09%, 2.91% and 0.21% regarding ACC, SPE, AUC and F1 for
MCI vs. CN classification. And ‘Left’ has better performance for
the multi-class diagnosis task, with an accuracy of 62.12% and
a metric F1 of 59.07%, which are 1.67% and 6.52% higher than
‘Right’. These results imply that disease-related abnormalities in
sMRI scans may develop in an asymmetrical manner, with the left
discriminative regions appearing to be more susceptible to AD or
MCI than the right ones. Our results concur with previous publi-
cations [73,74], which indicate that the left hemisphere appears
to have slight preferential atrophy compared to the right in sMRI
scans. Furthermore, the best overall performance is achieved by
using both the left and right hemispheres, which indicates that
our method considering multi-relation reasoning in pairs of left
brain and right brain jointly is effective and reasonable.

6. Conclusion

In this study, we propose a novel method named MRN to
boost the performance of sMRI-based AD diagnosis and assist
in exploring potential imaging biomarkers. Specifically, disease-
related regions are identified through group difference analysis,
upon which semantic and spatial graphs are constructed. Then, a
local reasoning module is designed to effectively learn not only
pathological changes in disease-affected brain regions but also
their potential associations and interactions, generating region-
level representations. Furthermore, global reasoning is performed
on region-level representations to select discriminant informa-
tion and obtain subject-level representations for the final clas-
sification. We further investigate the influence of left and right
brain regions on the performance of the AD diagnosis, which
implies that the left regions have more obvious disease-induced
structural changes than the right ones. Experimental results on
ADNI demonstrate that MRN outperforms several state-of-the-art
approaches in multiple AD classification tasks and that analyzing
disease-related brain regions using graph theory can provide
critical information for AD diagnosis.
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Fig. 12. Visualization of the learned semantic and spatial relations. (a) Semantic correlation matrix. (b) Spatial correlation matrix.
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